

Fédération Charles Hermite

Automatique, Mathématiques, Informatique et leurs Interactions

Université de Lorraine - CNRS

ANNEXE 1 – Posters des doctorants

Posters présentés lors du Forum

(seuls figurent ici les posters dont les doctorants concernés autorisent la diffusion)

Marharyta ALEKSANDROVA

THÈSE : FACTORISATION DE MATRICES ET ANALYSE DE CONTRASTE POUR LA RECOMMANDATION

- Thèse en cotutelle entre :
 - France (Université de Lorraine, Laboratoire LORIA, équipe KIWI) et
 - Ukraine (National Technical University of Ukraine 'KPI')
- *Financement* :
 - Bourse du gouvernement Français

Les préférences des utilisateurs sur les articles (matrice de votes **R**) sont présentes dans le petit espace de *facteurs latents (FL)*

- Points forts :
 - Le modèle devient petit
 - (k<<min{m,n})
 - Prédictions de haute précision
- <u>Points faibles</u>:
 - FL n'ont pas d'interpretation → les recommandations ne peuvent pas être expliquées

Mes encadrants :

- Anne BOYER (KIWI)
- Armelle BRUN (KIWI)
- Oleg CHERTOV (NTUU 'KPI')

Analyse de contraste

<u>L'idée</u> : Trouver les *'patterns'* qui distinguent deux ou plusieurs *ensembles de contrastes* (ensembles, ayant différentes valeurs d'une certaine caractéristique).

Quelle est la différence entre ces 2 ensembles : par exemple, peut-on prédire la *forme* (caractéristique du contraste) en se basant sur d'autres caractéristiques des éléments ?

Oui, la *forme* peut être prédite par *couleur*: **bleu** – **triangle**, **noir** – **carré**.

2 algorithmes ont été proposés: ils permettent d'identifier les *'patterns'* pour *modifier la valeur du paramètre de contraste* :

- à base de '*clustering'*
- à base des *règles d'association*

Ces algorithmes peuvent être utilisés pour améliorer le niveau de satisfaction des utilisateurs avec les recommandations fournies par le système

Lossy compression of MRI images for tumor growth modeling and pretherapeutic evaluation of low-grade glioma

Meriem BEN ABDALLAH: meriem.ben-abdallah@univ-lorraine.fr PhD supervisors : Jean-Marie Moureaux and Luc Taillandier SBS department, CRAN, Lorraine University

General context

Low-grade gliomas are slow-growing, grades 1 and 2, brain tumors that originate from glial cells.

- The follow-up of low-grade glioma patients from MRI dataset is based on :
- MRI dataset manual segmentation
- Reconstruction of tumor volume with OSIRIX software
- Calculation of the tumor diameter
- Monitoring of the tumor diameter's velocity of growth

Importance of the manual segmentation's quality in defining the quality of patient's follow-up.

Motivation behind the study of the reproducibility of the manual segmentation of MRI dataset

- Inefficiency of automatic segmentation for low-grade gliomas due to the invasive nature of these tumors.
- Dataset manual segmentation performed by the same clinician.
- Better and faster therapeutic treatment of patients thanks to the
- segmentation of MRI dataset by many clinicians.
- Direction of a study to assess the reproducibility of MRI dataset manual segmentation vis-à-vis the practitioners, their experience and field of expertise

Material for the study

- ► Location : The PROMETEE Living Lab in TELECOM Nancy.
- Software : 32-bit OSIRIX and R software.
- Dataset :12 longitudinal axial FLAIR-weighted (except for one T2-weighted) MRI scans selected by an expert neurosurgeon
- Participants : 14 experts in low-grade glioma.

Method for the study

- Visual test to detect the participants with vision problems.
- Manual segmentation on a learning dataset to get familiar with OSIRIX.
- Manual Segmentation of the test MRI datasets. Completion of a questionnaire about the medical specialty and the years of experience.
- For each dataset, saving of the manual tracings and computation of the tumor volume

Statistical analysis

- Quantitative response variable: the tumor volume or the standardized tumor volume
- Qualitative predictor variable: the participant.
- For the study of the variability introduced by each participant, application of a one-way analysis of variance ANOVA to tumor volumes.
- For the study of the variability introduced by the years of experience and the medical specialty on the tumor volumes, application of Fisher's exact test on the standardized tumor volumes.

Results

The boxplot shows that the dispersion of tumor volumes per dataset around the mean and the median is low.

- The analysis of variance proves, with a significance level of 5%, that the practitioner factor has no significant influence on the average values of the volume variable
- Fisher's exact test proves, with a significance level of 5% , that the medical profession and the number of years of experience don't have a significant impact on the tumor volume estimation.

Perspectives

- Conduction of a similar study with an automated segmentation algorithm.
- Conduction of a similar study with compressed MRI datasets, using the best compression standards (JP2K, JP2K 3D, HEVC ...).
- Creation of a decision support software to predict the abrupt change in tumor growth for patients undergoing chemotherapy and to alert the physicians on the possibility of ending the treatment.

Système multi-agents de pilotage réactif du flux patients au sein des systèmes hospitaliers

Noura Benhajji, Daniel Roy, Didier Anciaux LGIPM – Laboratoire de Génie Industriel, de Production et de Maintenance

noura.benhajji@univ-lorraine.fr

Contexte

- Le secteur de la santé en France a connu d'importantes transformations
- Renouvellement des modèles économiques et de l'offre de soins, □ Innovations organisationnelles et gestionnaires,
- Introduction des patients comme acteurs du système de soins.
- Introduction de nouvelles stratégies de modélisation et d'optimisation dans les systèmes hospitaliers : Gestion des flux patients.

Objectifs

- Système d'aide à la décision dédié au personnel hospitalier:
- Gestion optimale des flux patients : minimiser le temps de cycle de parcours des patients,
- Planification des activités de soins, Gestion des aléas : solutions de réaffectations et de réorganisation.
 - Méthodologie

Modélisation

- La modélisation du processus hospitalier permet de comprendre le fonctionnement du système et de déterminer les méthodes de résolution appropriées selon les spécificités de notre problème.
- Modélisation UML (Unified Modeling Language)
- le formalisme UML permet de décrire le système d'un point de vue organisationnel, dynamique et temporel.

Figure 1 : Diagramme de clas Consultation

Modélisation à base d'agents

- La gestion et le contrôle du flux patients est un problème complexe où plusieurs acteurs de différentes disciplines interviennent.
- Les propriétés des agents : l'autonomie, la pro-activité et la sociabilité, ainsi que les caractéristiques des systèmes multi-agents : la distribution, la communication, la coordination et la négociation sont appropriés pour modéliser notre système.
- □ Architecture
- Architecture hétérarchique : 1. Niveau supérieur («Agents Patients») 2. Niveau inférieur (agents ressources partagées).
 Architecture modulaire : de nouvelles entités peuvent être
- ajoutées ou supprimées sans que la structure change
- Approche centrée patient inspirée des approches de pilotage par le produit issues du domaine industriel

Modélisation mathématique

- Modèle mathématique d'optimisation non-linéaire multi-objectifs.
- □ Fonctions objectives : 1. Maximiser le nombre d'actes médicaux programmés. 2. Maximiser le taux d'occupation des acteurs. 3. Maximiser l'utilisation des ressources matérielles. 4. Maximiser les profits

Variables de décision :

- J1 si le ième acteur de typej performe l'acte médical 1 pour le patient p 0 sinon
- [1 si la ième ressource de typek est utilisée pour l'acte médical 1 pour le patient p Z., = 0 sinon

Gestion des aléas

Deux niveaux de contrôle :

- Niveau inférieur : négociation/coordination interservices.
- Diveau supérieur : négociation/coordination entre «Agents Patients»

Implémentation

- Système multi-agents : JADE (Java Agent DEvelopment Framework).
- Decide Modèle mathématique : FICO Xpress Optimization Suite

Conclusions

Contribution scientifique : Système multi-agents de pilotage réactif dynamique et distribué centré patient du parcours patient au sein des systèmes hospitaliers.

Originalités :

- □ Approche à base d'agents : agent central («Agent Patient») et agents auxiliaires (agents associés aux ressources partagées).
- Approche centrée patient : l'«Agent Patient» ordonnance et planifie les actes médicaux prescrits au patient associé.
- Architecture hétérarchique avec deux niveaux de contrôle.
- Gestion intégrée de l'intégralité du parcours patient.

Objectif

Un biocapteur est un système analytique constitué d'un composé biologique (Analyte) relié à un transducteur. Ce dernier a pour objectif de transformer le signal biochimique en signal électrique quantifiable (Figure 1).

Objectif : Conception d'un biocapteur capable de détecter la présence de séquence ADN en utilisant la spectroscopie de bioimpédance.

Méthode

Circuit équivalent avec la présence des séquences ADN

Un échantillon biologique placé entre deux électrodes peut être représenté par le modèle équivalent simplifié d'un circuit RC parallèle

Figure 2. (a) Modèle à deux électrodes planes parallèles avec la présence de séquence ADN.
(b) Circuit équivalent de (a) avec Reol qui représente les caractéristiques de la solution et Radn celle de l'ADN.

Optimisation

Afin de diminuer les effets de la capacité d'interface, nous proposons une réduction du facteur de la cellule Kcell [1] en fonction de la géométrie des électrodes (N,L,W,S).

La Figure 4 représente l'influence de la variation du L et N sur le Kcell.

Figure 4. Facteur de cellule Kcell en fonction de N et L

Conclusion

Les perspectives de ce travail sont :

- La vérification du fonctionnement par mesure de solution étalon.
- La mise en place d'une interface d'acquisition rapide (Figure 10).
- La mesures de concentration d'ADN en fonction de Z.
- Fonctionnalisation de surface par Self Assembled Monolayer (SAM) (Figure 9).

Figure 1. Principe de fonctionnement d'un biocapteur et la Détection d'ADN par hybridation

Modélisation

Le modèle de circuit équivalent nous permet d'obtenir l'impédance totale du biocapteur. Cette impédance est fonction de la capacité d'interface (Electrode/Electrolyte), la capacité et la résistance de la solution.

Figure 3: Modèle et circuit équivalent d'un biocapteur à électrodes interdigitées, Csol et Reol représente les paramètres de la solution à tester et Cint représente la capacité de double couche.

Z est l'impédance totale du circuit équivalent. Cette impédance est en fonction de $G_{\rm sol}$ (Conductance de la solution), $C_{\rm sol}$ (Capacitance de la solution) et $C_{\rm interface}$ (Capacité de l'interface électrolyte).

$$Z = \frac{1}{G_{sol} + j\omega C_{sol}} + \frac{1}{j\omega C_{interface}} \quad C_{interface totale} = \frac{N}{4} LWC_0 avec C_0 = \frac{4\varepsilon_0 \varepsilon_{r,BF}}{NLWK_{cel}}$$

Conception

Les résultats de l'optimisation de Kcell (Figure 4), nous ont permis de modéliser sous le logiciel CoventorWare (Logiciel de modélisation pour MEMS) 5 capteurs (2 modèles sont issus de la bibliographie pour une étude comparative) (Figure 5). Nous avons développé un système de fixation (Figure 7) pour faciliter l'interfaçage des capteurs aux dispositif de mesure (impédance mètre / Carte d'acquisition rapide).

[1] T. Ngo, H. Shirzadfar, A. Bourjilat, D. Kourtiche and M. Nadi, A method to determine the parameters of the double layer of a planar interdigital sensor, Proceedings of the 8th International Conference on Sensing Technology, Sep. 2-4, 2014, www.model. UK

Génération, vérification formelle et simulation de séquences de conduite pour un système complexe critique

Thomas Cochard, David Gouyon, Jean-François Pétin thomas.cochard@univ-lorraine.fr

Contexte & problématique industrielle

- Contexte : conduite de procédés industriels complexes à risques
- Problématique industrielle : service d'aide à la décision pour la préparation de séquences d'actions de conduite (passage d'un état donné de l'installation à un état cible)
 en réaction à des aléas (non disponibilité des matériels, modifications des objectifs de conduite, ...)
- en treaction a des areas (non disponinne des materies, incurracións des objectis de conduite, ...)
 en treant compte: de l'état actuel de l'installation, de la structure du système à conduire, des contraintes de sécurité, ...

Problématique scientifique adressée

- \rightarrow Comment **générer/vérifier formellement** une séquence permettant d'atteindre un objectif défini?
- → Comment modéliser le système d'intérêt pour assurer un passage à l'échelle des travaux?

Approches existantes

Modélisation de systèmes complexes [Alur et al. 1994, ISA88 199

- Modélisation de systèmes réactifs hiérarchisés
- Prise en compte d'éléments hétérogènes (états, disponibilités, grandeurs physiques, ...)

Génération de séquences [Rivas et al. 1974, Li et al. 199

- Démonstration de l'existence d'une séquence d'action faisable (respectant les diverses contraintes de sécurité et de sûreté)
- Extension à la recherche d'un ensemble de solution faisables

Vérification de séquences [Baier et al. 2008, Li et al. 2014]

- Formalisation d'une séquence d'action en vue de sa vérification
- Simulation de la séquence pour vérifier à la fois l'atteinte de l'objectif et le respect des contraintes

Applicabilité d'approches existantes

ÉVALUATION de faisabilité de génération automatique d'une séquence d'actions basée sur une combinaison d'approches existantes : modèles en automates communicants avec une structuration basée sur la norme ISA88 et mécanisme de recherche d'atteignabilité (Cochard et al. 2015a, 2015b)

Figure 2: Approche de génération de séquences

Publications

(Cochard et al., 2015a) Thomas Cochard, David Gouyon, Jean-François Pétin. Génération de séquences d'actions sûres par recherche d'atteignabilité. Génie logiciel, 2015, Mars 2015 (112), pp.43-50. (Cochard et al., 2015b) Thomas Cochard, David Gouyon, Jean-François Pétin. Generation of safe plant operation sequences using reachability analysis. 20th IEEE Conference on Emerging Technologies & Factory Automation. ETFA 2015, September 2015, Luxembourg, Luxembourg.

20

PARCOURS de l'espace d'état limité aux éléments nécessaires et suffisants : utilisation de connaissances métiers (structure du système, interactions, ...) pour déterminer les éléments d'intérêts.

Figure 3: Étude comparative des deux approches

Apports des techniques de réduction/d'abstraction de modèles

O^N propose de combiner l'approche précédente avec une **technique d'abstraction** et de décomposer l'organisation hiérarchisée du système en k niveaux $N_{k-1} \dots N_0$ par paires de niveaux (N_{i+1}, N_i) : 1. Modèle A, détaillé, au niveau N_{i+1}

2. Modèles B_j , abstraits, au niveau N_i

afin de construire un modèle de niveau $\mathcal{M}_{(N_{i+1},N_i)}$ tel que : $\mathcal{M}_{(N_{i+1},N_i)}=A||B_1||B_2||\dots||B_j$

Figure 4: Découpage du système par niveaux hiérarchiques

Perspectives

- Proposition d'une démarche systématique d'abstraction
- Preuve d'équivalence entre les modèles abstraits et détaillés
- Application sur un cas d'étude industriel

Introduction Dans le domaine en pleine croissance des communications en groupe, les chiffreurs auto-synchronisants (SSSC) constituent un outil efficace pour les appareils mobiles qui exigent des communications à la fois privées et très rapides, par exemple les systèmes PMR (Professional Mobile Radio) et aussi des appareils à faible consommation électrique comme les équipements bluetooth, les tags RFID, et autres détecteurs de type SCADA qui nécessitent des algorithmes de chiffrement dits légers "lightweight cryptography".

- Objectives proposition d'une nouvelle classe de chiffreur auto-synchronisant pour les communications privées.
 - application de la notion algébrique de platitude (théorie du contrôle).
 - caractérisation complémentaire de la notion de platitude par une approche par graphe et application à la synthèse de systèmes plats.
 - application aux systèmes dynamiques LPV pour la conception de chiffreurs auto-synchronisants.
 - étude de l'aspect sécurité de la nouvelle classe SSSC basée sur les systèmes LPV.

Propriétés de platitude et architectures

- construction d'un SSSC basé sur un système LPV (approche algébrique)
- étude de structures de graphe approprié pour la conception de SSSC
 étude de fonctions non linéaires adéquates qui garantissent de bonnes
- propriétés de diffusion et de confusion. • étude de l'aspect sécurité (résistance à des attaques spécifiques)
- implémentation du schéma

- B.Dravie, P.Guillot and G. Millérioux. Security proof of the canonical form of the Self-Synchronizing Stream Cipher. In proc. the ninth Workshop on Coding and Cryptography (WCC'15), Paris, France, Avril 2015.
- [2] B. Dravie, J. Parriaux, P. Guillot and G. Millérioux. Matrix representation of vectorial boolean functions and eigenanalysis. In. Cryptography and Communications-Discrete-Structures Boolean Function and Sequences (CCDS).

Khuram FARAZ^{*a,b*}, Sharib ALI^{*a,b*}, Walter BLONDEL^{*a,b*}, Ernest GALBRUN^{*a,b*}, Marine AMOUROUX^{*a,b*}, Christian DAUL^{*a,b*} {firstname.lastname@univ-lorraine.fr}

^aUniversité de Lorraine, CRAN, UMR 7039, 2 avenue de la Forêt de Haye, 54516 Vandœuvre-lès-Nancy cedex, France ^bCNRS, CRAN, UMR 7039, 54516 Vandœuvre-lès-Nancy, France

Abstract

Automatic building of large field of view mosaics of cutaneous surfaces facilitate diagnosis and is a key approach in the con-text of tele-health. The present study aims at comparing the performances of three optical flow (OF) methods (a local vari-ational method, a global graph-cut method and a total varia-tional approach) in the frame of human skin image mosaicing. Both quantitative and qualitative results are given, respectively on phantom data with known ground truth and on patient data.

Introduction

Context

Context Skin lesion diagnosis and follow-up are based on visual inspec-tion by dermatologists. The latter practicing in urban areas mainly, telemedical approaches are developed to solve the eco-nomical and health problems of people with reduced mobility and/or living in remote areas.

Objective

Our goal is to obtain extended FOV images by superimposing the common parts of several limited FOV images issued from a video sequence. Such mosaics facilitate scene interpretation and lesion follow-up.

Literature on skin mosaicing being limited and less encompass-ing, this exploratory study aims to establish the feasibility of dermoscopic image mosaicing by comparing performances of different registration algorithms developed in another medical context.

Figure 1 General block diagram sketching the mosaicing principle based on optical flow (OF) assessment.

Although skin is an elastic organ, considering the small FOV of Autoign skin is an easte organ, considering the small FOV of individual frames, a rigid perspective transformation can be as-sumed between successive images of a video sequence. With an additional planar surface assumption, the homogeneous coordinates of homologous points in two successive images are related by a homography $T_{i,i+1}$:

$$\begin{bmatrix} \alpha x_i \\ \alpha y_i \\ \alpha \end{bmatrix} = \underbrace{\begin{bmatrix} f\cos\phi & -s_x\cos\phi & t_x \\ s_y\sin\phi & f\cos\phi & t_y \\ h_1 & h_2 & 1 \\ \hline T_{i,i+1} \end{bmatrix}}_{T_{i,i+1}} \begin{bmatrix} x_{i+1} \\ y_{i+1} \\ 1 \end{bmatrix}$$

with f = scale factor

with f = scale factor $\phi = \text{in-plane rotation}$ $s_x, s_y = \text{shear factors}$ $t_x, t_y = 2D \text{ translations}$ $h_1, h_2 = \text{perspective changes } x_i, y_j = \text{coordinates in image } I_i$ $\alpha = \text{scale factor}$ Once the homographics T_{i+1} corresponding to successive pairs (I_i, I_{i+1}) of the video sequence are computed, the images are all placed in a global image co-ordinate system (of image I_0). This image stitching step is done with the homographics $T_{i,i+1}$ which are themselves computed using the dense correspon-dences given by the OF between images.

Algorithms

Inverse compositional method [1, 2]

Minimizes the sum of squared differences (SSD) of inten-sity values between images I_i and I_{i+1}.

$$SSD = \sum_{\mathbf{x} \in I \cap I_{i}} [I_{i}(\mathscr{W}_{i,i+1}(\mathbf{x};\Delta\mathbf{M})) - I_{i+1}(\mathscr{W}_{i,i+1}(\mathbf{x};\mathbf{M}))]^{2}$$

 $\begin{array}{l} \mathrm{vcl}(\mathcal{A}_{i+1}) \\ \mathrm{vcl}(\mathcal{A}_{i+1}) \\ \mathrm{wt}(\mathcal{B}_{i}) \\ \mathrm{wt}(\mathcal{B}_{i}) \\ \mathrm{vcl}(\mathcal{A}_{i+1}) \\ \mathrm{vcl}(\mathcal$

- $\mathscr{W}_{i,i+1}(\mathbf{x};\mathbf{M}) \leftarrow \mathscr{W}_{i,i+1}(\mathbf{x};\mathbf{M}) \circ \mathscr{W}_{i,i+1}(\mathbf{x};\Delta\mathbf{M})^{-1}$
- with 'o' representing the element-wise product. An initial warping is done using cross correlation between the image pair (I_i, I_{i+1}) giving a first estimate of the 2D translation.
- Rflow variational Energy Minimization [3, 4]
- · Classical variational model has strong brightness constancy

 $\phi \|\nabla S_{i+1} \Delta \mathbf{u} + S_{i+1}(\mathbf{x} + \mathbf{u}^0) - S_i(\mathbf{x})\|^1 + \|\gamma L\|^1 d\Omega +$ $\int_{\Omega} \{ \|\nabla \mathbf{u}\|^1 + \|\nabla L\|^1 \} d\Omega$

where S represents the structure image while ϕ and γ are weighting factors and L the illumination difference. Graph-cut based method [5, 6]

- The data-term exploits color information and key-point cor-respondences:
- $E(\mathbf{u}) = E_{color}(\mathbf{u}) + \beta E_{keypoints}(\mathbf{u}) + \lambda_s E_{smooth}(\mathbf{u})$ C(d) = L_color(d) + D_ceppoints(d) + As_model(d). Global projective transformation is approximated by local affine transformations on a triangular grid. The real geomet-rical transformation between images is approximated by

$$E_{color} = \sum_{n=1}^{N} \frac{1}{|\Delta_n|} \sum_{\mathbf{x} \in \Lambda_n} \|I_i^{RGB}(\mathbf{x}) - I_{i+1}^{RGB}(\mathcal{W}_{i,i+1}(\mathbf{x}))\|^2$$

where
$$\Delta_n$$
 is the *n*th triangle in the grid and I_i^{RGB} represents the RGB image intensity.

Key-points are extracted using SURF [7]. normalized smoothing term minimizes the discrepancy in t

flow vectors of neighboring triangle nodes.

$$E_{smooth} = \sum_{p,q} \frac{1}{\|p-q\|^2} \|\mathbf{u}_p - \mathbf{u}_q\|^2$$

with p and q being the nodes on the grid and \mathbf{u}_p the OF at node p

Results and Discussion

A high resolution dorsal skin image is used to simulate a
 video.securate

- A high resolution dursal sam image is a set in the set independence.
 T^{init}_i are ground truth homographies and T_{i,i+1} are the estimated ones.
 The parameters of the ground truth homographies were randomly chosen (see Table 1 for the parameter intervals).
- Table 1 Parameters for the video simulation using overlapping sub-images extracted from the dorsal image of Figure 2.

π i

Quantitative results for simulated data

- Two criteria were used for comparing quantitatively the results of the methods studied:
- The image registration error (IRE) defined as:

$$RE = \frac{1}{N} \sum_{p \in I_i \cap I_{i+1}} \| T_{i,i+1}^{true} p - T_{i,i+1} p \|^2$$

- where N is the total number of pixels p in the overlapped
- where N is us to the many set of the landmark position in Fiducial landmark error (FLE) computed as the Euclidean distance between the centroid of the landmark position in the ground truth image and in the estimated mosaic. The landmark closest to the last frame of the sequence is se-lected for this purpose. Thus, the IRE and FLE represent "local" and "global" registration errors respectively.

This work is co-funded by the French Research National Agency (ANR), the European Regional Development Funds (FEDER) and the Regional Council of Lorraine

Figure 3 Protocol I mosaic using Rflow

Figure 4 Protocol II mosaic using Rflow

igure 5 Mosaic of orbital region from a 2 s long real video sequence consisting of 29 frames.

Conclusion and Perspectives

- The performance of three mosaicing methods developed for bladder mosaicing was tested and compared for cutaneous surface mosaicing.
- The initial results are promising and will help us develop dedicated algorithms for skin image mosaicing.
- The computation of OF with a total variational l^1 approach provides the best compromise between registration robustness, accuracy and time.
- Graph-cut based methods, on the other hand, are robust and accurate but too slow. Local OF methods are fast but suffer from lack of robust-
- ness for registration of skin images with high texture vari-ability.

References

- Y. Hernandez-Mier, W. Blondel, C. Daul, D. Wolf, and F. Guillemin, "Fast construc-tion of panoramic images for cystoscopic exploration", *Computerized Medical Imag-*ing and Graphics, vol. 34, no. 7, pp. 579–592, 2010.
- S. Baker, R. Gross, T. Ishikawa, and I. Matthews, "Lucaskanade 20 years fying framework: Part 2", International Journal of Computer Vision (J0 pp. 221–255, 2003.
- p. 221–225, 2003.
 Ali, C. Daul, and W. Blondel, "Robust and accurate optical flow estimation for eak texture and varying illumination conditions: Application to cystoscopy", in In-rmational Conference on Image Processing Theory, Tools and Application (IPTA)
- 2014. S. Ali, C. Daul, E. Galbrun, M. Amouroux W. E bladder image registration by redefining data-terr Medical Imaging: Image Processing, SPIE, 2015. [4] ux W. Blondel, and F. Guillemin, "Robust data-term in total variational approach", in
- Medical Imaging: Image Processing, SPIE, 2015.
 [5] T. Weibel, C. Daul, D. Wolf, R. Rösch, and F. Guillemin, "Graph based of textured large field of view mosaics for blader cancer diagnosis", Path tion, vol. 45, no. 12, pp. 4138–50, 2012. [6]
- T. Weibel, C. Daul, D. Wolf, and R. Rösch, "Contrast enhancing seam detectior and blending using graph cuts", in International Conference on Pattern Recognition (ICPR), pp. 2732–2735, 2012. [7] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speededup robust features (SURF)" Computer Vision and Image Understanding (CVIU), vol. 110, no. 3, pp. 346–359
- A 11

Incremental Learning in Distributed Embodied Evolutionary Robotics

Pronostic de la performance d'efficacité énergétique pour l'optimisation du maintien en conditions opérationnelles de systèmes industriels

Département Ingénierie des Systèmes Eco-Techniques (ISET) Projet SdFS (Sûreté de Fonctionnement Système)

Doctorant : Anh HOANG

Directeur de thèse : Benoît IUNG

Co-directeur de thèse : Van Phuc DO

Financement : Bourse du Ministère de l'éducation et de la formation du Vietnam + complément fonds propres

MÉTHODOLOGIE PROPOSÉE

Modèles de

-

pronostic de l'EE

se l: Définition de concept et m

nodéles d'EF

CONTEXTE DE LA THESE

- Systèmes industriels de plus en plus complexes avec de nombreuses exigences/performances à maîtriser/optimiser
- Exigences émergentes comme celles liées à la sécurité, au développement durable et plus spécifiquement à la consommation d'énergie, à l'efficacité énergétique (EE)
- La phase de maintien en conditions opérationnelles (MCO) doit jouer un rôle majeur dans la maîtrise et l'optimisation de ces performances mais à la condition de faire évoluer ses stratégies dans une vision plus système, pour une anticipation des dérives et un controle du coût global de possession

PROBLÉMATIQUES SCIENTIFIQUES

 Définition d'indicateurs pertinents de l'efficacité énergétique aux multi-niveaux d'abstraction d'un système industriel

- Modélisation, quantification des relations et impacts de ces indicateurs avec les autres indicateurs de performances
- Suivi de la projection, du pronostic de l'évolution de ces indicateurs dans une vision système pour une anticipation des dérives
- Modélisation de la prise de décision sur la base de l'ensemble de ces performances, de leurs relations, de leurs impacts, de leurs projections ... dans un objectif de maîtrise du coût global de possession

EXPÉRIMENTATION

w II : De

de posses

(Durée de vie

as d'objectifs Corr

Développement de me

vec une vision coût global

administration (

des décisions multic

RLI

 Proposition et validation d'un modèle de pronostic de l'EE pour moteurs industriels

UNIVERSITÉ DE LORRAINE

 Application des contributions au système d'enroulement de bande TELMA de l'AIPL

TRAVAUX EN COURS

- Développement d'un modèle de décision multicritères prenant en compte à la fois des indicateurs classiques, les indicateurs proposés (EEI, REEL) et leurs interactions, dans une vision Coût Global de Possession
- Études des comparaisons du modèle proposé et des modèles existant
- Rédaction d'un papier en revue pour le journal "Applied energy"

TRAVAUX À VENIR

- Application des contributions à une presse d'une ligne de fabrication de
- Soumission d'un deuxième en revue papier
- Rédaction du rapport de thèse

(a) Proposition d'un indicateur d'efficacité énergétique (EEI) facilitant la décision à de multiples niveaux d'abstraction

· Outils scientifiques utilisés : Processus stochastiques, modélisation mathématique et simulation

du système

(b) Formalisation de l'indicateur multi-niveaux d'efficacité énergétique pour chaque niveau considéré (composant, fonction, système)

(c) Proposition et formalisation d'un nouveau concept de pronostic de durée de vie énergétique résiduelle (Remaining Energy-Efficient Lifetime, REEL)

PUBLICATIONS

· Outils support : Matlab

Conférence Francophone: MOSIM'14 , France

Conférences Internationales: Second european conference PHM society 2014, Nantes, France; IEEE-2015 ICRSE & PHM-Beijing, China; IEEE-ATC 2014, Vietnam Soumission de papier en revue: Journal Européen des Systèmes Automatisés

Probabilistic Latency for Partial Ordering

Pascal Urso and Jordi Martori

pascal.urso@loria.fr, jordi.martori@inria.fr Université de Lorraine – Inria

been received.

A 16

Modèle de Regime-switching pour l'estimation de la Value-at-Risk & File^{cartan} Stratégies de Couverture d'options sous une contrainte sur la valeur initiale

Ínría-

Khaled SALHI (étudiant en thèse dans l'équipe Tosca) Directeurs de thèse : Madalina Deaconu et Antoine Lejay Institut Elie Cartan, Université de Lorraine.

khaled.salhi@inria.fr

ANNEXE 2 – Liste des participants

LISTE DES PARTICIPANTS AU FORUM FCH-ENTREPRISES 21/01/16

Nom	Prénom	Institution	Email
ALEXANDRE	Pascal	Saint-Gobain PAM	Pascal.Alexandre@saint-gobain.com
ALEKSANDROVA	Marharyta	Doctorant	marharyta.aleksandrova@loria.fr
ALLIOTTE	Thierry	IHS Project	t.alliotte@ihsproject.com
	Sophie	Pôle HYDREOS	sophie.altmeyer@hydreos.tr
	Pierre	NEILOOKS	pierre.andrieu@netlooks.fr
	Xavier Evolupo	IEUL Bodon Environnomont et milioux agustigues	
			alexis aubry@univ.lorraine.fr
A00K1 A77I	Julien	CHU	i azzi@chu-pancy fr
BACK	Aurore	Ecole des Mines	aurore back@univ-lorraine fr
BAJIC	Eddy	CRAN	eddy.baiic@uniy-lorraine.fr
BARBIER	Florent	PREDICT	florent.barbier@predict.fr
BASTOGNE	Thierry	CRAN/Cybernano/BIGS	thierry.bastogne@univ-lorraine.fr
BEATRIX	Alexis	Société The WiW	alexis.beatrix@thewiw.com
BELLET	Jean-Baptiste	IECL	jean-baptiste.bellet@univ-lorraine.fr
BELMERNHIA	Leila	Doctorant	belmerhnialeila@ymail.com
BEN ABDALLAH	Meriem	Doctorant	meriem.benabdallah87@gmail.com
BENHAJJI	Noura	Doctorant	noura.benhajji@gmail.com
BERTRAND		Doctorant	loic.bertrand@ymail.com
BOULLEE	Stéphanie	SAILOR	stephanie.boullee@univ-lorraine.tr
	Ayoub	Doctorant Dâlea Fibraa Francisia	ayoub.bourjilat@gmail.com
	Julien		
	Julie		presciani@cesi.ir
	Sylvain		s.bhat@vigimedis.com
	Rámi	Ingénieur Conseil	rhriguel@orange_fr
BROSSARD	Séhastien	ENDRESS+HAUSER	sebastien brossard@fr endress.com
CALVO	Méghan	SEPAREX	separex@separex_fr
CHARPENTIER	Patrick	CRAN	Patrick.Charpentier@univ-lorraine.fr
CHEVRIER	Vincent	LORIA	vincent.chevrier@loria.fr
CIARLETTA	Laurent	Loria	laurent.ciarletta@loria.fr
CINI	Guillaume	CINI SA	guillaume.cini@gmail.com
CINI	Jérôme	CINI SA	j.cini@cini.fr
COCHARD	Thomas	Doctorant	thomas.cochard.1@gmail.com
CONTASSOT-VIVIER	Sylvain	LORIA	sylvain.contassotvivier@loria.fr
CRAUS	Denis	EHPAD Saint Joseph	geronto.saintnicolas@wanadoo.fr
DAD	Chérifa	Doctorante	cherifa.dad@centralesupelec.fr
DANTAN	Jean-Yves	ENSAM	jean-yves.dantan@ensam.eu
DAUL	Christian	CRAN	christian.daul@univ-lorraine.fr
	I nierry	Direction des Partenariats	therry.daunois@univ-iorraine.tr
	Caroline Maria Dominique		c.dellenlaut@bleger-mein.com
	Francois		francois devillard@univ_lorraine_fr
	Anno Sonhio		
	Anne-Sophie		
	Laelilla	CRAN Desterant	haelilla.diez@univ-iorraine.ir
	Florian	SUEZ Fau France	florian fabacher@lyonnaise.des.eaux fr
FARA7	Khuram		khuramfaraz@hotmail.com
FFJ0Z		RTaW	loic feioz@realtimeatwork.com
FERNANDEZ-PERE7	Inaki	Doctorant	cyberinakito@hotmail.com
FIAT	Laurent	VIGIMEDIS	I.fiat@vigimedis.com
FOLMER	Alexandre	Pôle HYDREOS	alexandre.folmer@hydreos.fr
FORRISI	Ivano	GREEN	ivano.forrisi@univ-lorraine.fr
FOUCAUT	Jean-Baptiste	CRITT Bois	jean-baptiste.foucaut@cribois.net
GARLAND	Tony	Centre de Ressources Régional	t.garland@cdrregional.org
GEGOUT-PETIT	Anne	IECL	anne.gegout-petit@univ-lorraine.fr
GEHIN	Caroline	ESSTIN	caroline.gehin@univ-lorraine.fr
GODON	Benoit	Pôles Fibres-Energivie	benoit.godon@fibres-energivie.eu
GOUYON	David	CRAN	david.gouyon@univ-lorraine.fr
GUENARD	Adrien		adrien.guenard@inria.fr
	Bernard	UKAN	bernard.neit@univ-lorraine.fr
	IVIAIC Detriel		nemenm@nager.m
	Panoit	LUKIA Doctorant	patrick.nenari@iona.fr
		Doctorant	penoit.nenry@univ-iorraine.ir
	Mickaöl		ann.noany.nustwyniaii.com m holle@imag_ing.com
HUMBERT	Didier	SATT Grand Est	Didier Humbert@univ-lorraine fr
JUNGERS	Marc	CRAN	marc jungers@univ-lorraine fr
JUPPIN	Christophe	CCI Haute Marne	c.juppin@haute-marne.cci.fr

KALMAR	Rémy	BFG Environnemental Technologies	remykalmar@yahoo.fr
KOUDOU	Efoevi	IECL	efoevi.koudou@univ-lorraine.fr
LAGADIC	Aurélien	SEPAREX	alagadic@separex.fr
	Abdelkader	LORIA	abdelkader lahmadi@loria fr
	Pascal	INRS-Département IFT	pascal lamy@inrs fr
	Vincent	CRAN	vincent laurain@univ-lorraine fr
	Francis	CRAN	
	Fric		eric levrat@univ_lorraine_fr
	LIIC Erio		eric medeule@univ-lonalite.in
	Didior		didior maguin@univ-lorraine.fr
	Diulei		
MARCHAND	Benoil		Benoil.MARCHAND@cea.ir
MARION	Jean-rves		Jean-Yves.Marion@ioria.fr
MARIORI	Jorai	Doctorant	Jordi.martori@inria.fr
MEFIRE	Seraphin		seraphin.metire@univ-lorraine.fr
MERY	Dominique		dominique.mery@loria.fr
MERY	Marine	Centre de Ressources Régional	m.mery@cdrregional.org
MEZIERES	Sophie	IECL	sophie.mezieres@univ-lorraine.fr
MILLERIOUX	Gilles	CRAN	gilles.millerioux@univ-lorraine.fr
MOLIE	David	StanSea	stansea@gmx.fr
MONNEZ	Jean-Marie	IECL	jean-marie.monnez@univ-lorraine.fr
MONNIER	Baptiste		
MORETTINI	Arnaud	EHPAD Le Parc	medecin.ehpad.leparc@gmail.com
MOUREAUX	Jean-Marie	CRAN	jean-marie.moureaux@univ-lorraine.fr
NAPOLI	Amedeo	LORIA	amedeo.napoli@loria.fr
NASSER	Havat	Doctorant	hayat.nasser.89@hotmail.com
NGATCHOU WANDJI	Joseph	IECL	ioseph.ngatchou-wandii@univ-lorraine.fr
PETIT	Dorine	CRAN	dorine.petit@univ-lorraine.fr
PIERRAT	Philippe		philippe pierrat@univ-lorraine fr
PINCON	Bruno	IECL	bruno pincon@univ-lorraine fr
POUJO	Julie	Doctorant	iuliepouiol26@gmail.com
POURE	Philippe	LIL-Euipe 406 (MAE)	nhilippe poure@univ_lorraine fr
	Paul	BEG Environnemental Technologies	naul pradeau@bfgenvirotech.com
	Gérard	ESTIN	gerard prieur@univ-lorraine fr
	Christophe		christophe prudhomme@agence_maths_entreprises fr
	Vincent	Direction des Partenariats	vincent queudot@univ-lorraine fr
	Aidili Joon Dodolnho		
	Jean-Rodolphe		
	Mishaäl	CESI	liouxinarchano@cesi.ii
RUSINOWITCH	Michael	Lona	
	Khaled		knaled.salni.ept@gmail.com
SANNIER	Clement	Stagiaire Pole HYDREOS	clement.sannier@hydreos.fr
SEGHIR	Sakhina	Pole MATERALIA	sakina.seghir@materalia.fr
SIDOT	Thierry	Centre de Ressources Régional	t.sidot@cdrregional.org
SIEVERS	Madeleine	Centre de Ressources Régional	m.sievers@cdrregional.org
SONG	Ye-Qiong	LORIA	ye-qiong.song@loria.tr
SOUSSEN	Charles	CRAN	charles.soussen@univ-lorraine.fr
STAUDER	François	Cabinet Bleger Rhein Poupon	f.stauder@bleger-rhein.com
THEILLIOL	Didier	CRAN	didier.theilliol@univ-lorraine.fr
THOMAS	André	CRAN	andre.thomas@univ-lorraine.fr
THOMAS	Philippe	CRAN	philippe.thomas@univ-lorraine.fr
THOMESSE	Jean-Pierre	Professeur émérite	jean-pierre.thomesse@orange.fr
TLIG	Mohamed	LORIA	Mohamed.tlig@inria.fr
TSIONTSIOU	Evangelia	Doctorant	evangelia.tsiontsiou@loria.fr
VALLOIS	Pierre	IECL	pierre.vallois@univ-lorraine.fr
VINCENT	Yvon	TEA	yvon.vincent@Semco-groupe.fr
VOIRIN	Jean	COLAS EST	jean.voirin@colas-est.com
VOISIN	Alexandre	CRAN	alexandre.voisin@univ-lorraine.fr
WARNET	Nicolas	Télecom Nancy	nicolas.warnet@gmail.com
WEIBEI	Philippe	Imag-Ing	p.weibel@imag-ing.com